

VTTL050R15BNA

Datasheet

VTTL050R15BNA

General Description

V _{(BR)DSS}	R _{DS(ON)_max}	I_D
500V	1.45Ω@10V	5A

Symbol

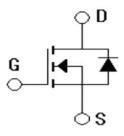
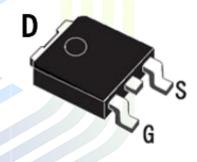



Figure 1 Symbol of VTTL050R15BNA

Features

- Fast Switching
- Low Gate Charge
- Low Crss
- Improved dv/dt capability
- 100% UIS Tested
- RoHS product

Package Type

TO-252

Figure 2 Package Type of VTTL050R15BNA

Application

- High frequency switching mode power supply
- Electronic ballast
- UPS

Ordering Information

Product Name	Package
VTTL050R15BNA	TO-252

VTTL050R15BNA

Absolute Maximum Ratings (T_C= 25 °C, unless otherwise specified)

Parameter	Symbol	Rating	Unit	
Drain-Source Voltage	$V_{ m DSS}$	500	V	
Gate-Source Voltage	V_{GSS}	±30	V	
Continuous Drain Current $T_C=25$ °C	I_{D}	5		
Continuous Drain Current $T_C = 100 ^{\circ}\text{C}$	1D	3.16		
Pulsed Drain Current Note1	I_{DM}	20	A	
Avalanche Current ^{Note1}	I _{AS}	5		
Single Pulsed Avalanche Energy ^{Note2}	Eas	305	mJ	
Repetitive Pulsed Avalanche Energy ^{Note1}	E _{AR}	12.15	mJ	
Peak Diode Recovery dv/dt ^{Note3}	dv/dt	4.5	V/ns	
Total Power Dissipation T _C = 25 °C	P _D	121	W	
Junction Temperature	TJ	150	°C	
Storage Temperature	T _{STG}	-55 to 150	°C	
Maximum Lead Temperature for Soldering Purposes	T_{L}	300	°C	

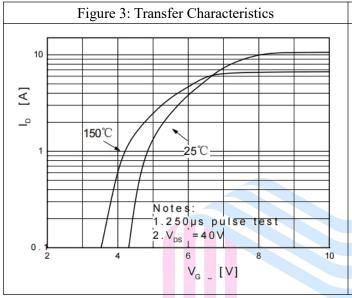
Thermal Resistance

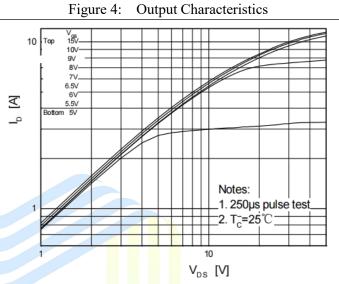
Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$		62.5		°C/W
Thermal Resistance, Junction-to-Case	Rejc		1.028		°C/W

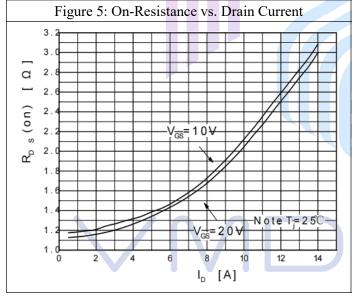
www.vmdsemi.com

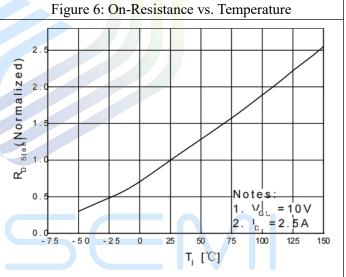
VTTL050R15BNA

Electrical Characteristics (T_J= 25 °C, unless otherwise specified)

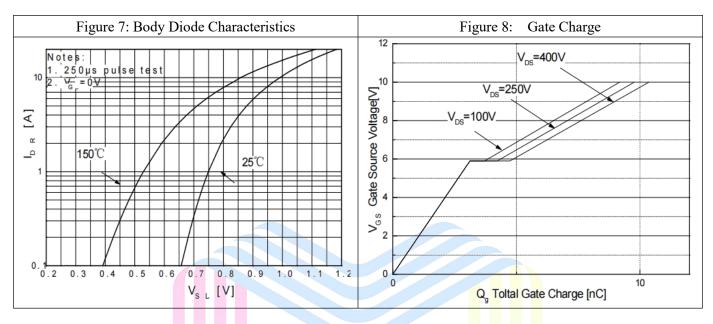

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Statistic Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D = 250uA	500	-	-	V
Breakdown Voltage	ΔBV _{DSS} /Δ	$I_D=250uA$	-	0.5	-	V/°C
Temperature Coefficient	TJ	referenced to 25°C				
	$I_{ m DSS}$	$V_{DS} = 500V, V_{GS} = 0V$	-	-	10	uA
Zero Gate Voltage Drain Current		$T_{\rm C}=25~{\rm ^{\circ}C}$				
Zero Gate voltage Drain Current	IDSS	$V_{DS} = 400V, V_{GS} = 0V$		-	100	
		$T_{\rm C}$ = 125 °C	-		100	
Gate-Body Leakage Current	I_{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$	-	-	±100	nA
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_D=250uA$	2.5	-	4.5	V
Static Drain-Source On-Resistance	R _{DS(ON)}	$V_{GS}=10V, I_{D}=2.5A$	-	1.25	1.45	Ω
Forward Transconductance Note4	g_{FS}	V_{DS} =40V, I_{D} =2.5A	-	3.47		S
Dynamic Characteristics	Dynamic Characteristics					
Input Capacitance	C _{ISS}	$V_{DS}=25V$	-	370	463	pF
Output Capacitance	Coss	V _{GS} =0V	-	62	78	pF
Reverse Transfer Capacitance	C _{RSS}	f=1MHz	-	4.3	5.4	pF
Switching Parameters Note4,5						
Total Gate Charge	Q_{g}	V_{DS} =400V	J -	10.3	14.5	
Gate-Source Charge	Q_{gs}	$V_{GS}=10V$	-	3.1	-	пC
Gate-Drain Charge	Q_{gd}	$I_D = 5A$	-	4.6	-	
Turn-on Delay Time	t _{d(on)}	$V_{DD}=250V$	-	19.2	23	
Turn-on Rise Time	$t_{\rm r}$	$I_{D}=5A$	-	25.3	30	ng
Turn-off Delay Time	$t_{d(off)}$	$R_G=25\Omega$	-	35.2	42	ns
Turn-off Fall Time	t_{f}	N(j=23 52	-	24	29	
Diode Characteristics						
Diode Forward Voltage	V_{SD}	$V_{GS}=0V$, $I_{SD}=5A$		-	1.4	V
Reverse recovery time ^{Note4}	trr	$V_{GS}=0V,I_{SD}=5A$		106	-	ns
Reverse recovery charge ^{Note4}	Qrr	di/dt=100A/us	J	0.14		uС

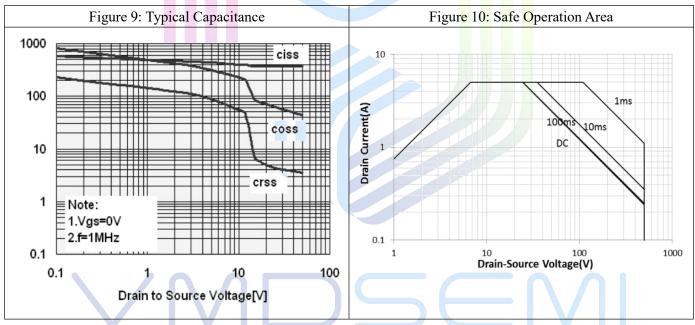

Notes:

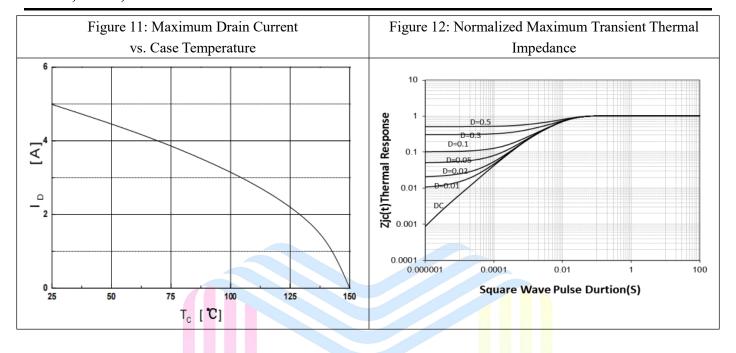

- 1. Pulse width limited by maximum junction
- 2. L=10.5mH, I_{AS} =5A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} =25°C
- 3. $I_{SD} \le 5A$, $di/dt \le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, $StartingT_J = 25$ °C
- 4. Pulse Test: Pulse Width ≤300μs,Duty Cycle≤2%
- 5. Essentially independent of operating temperature


VTTL050R15BNA

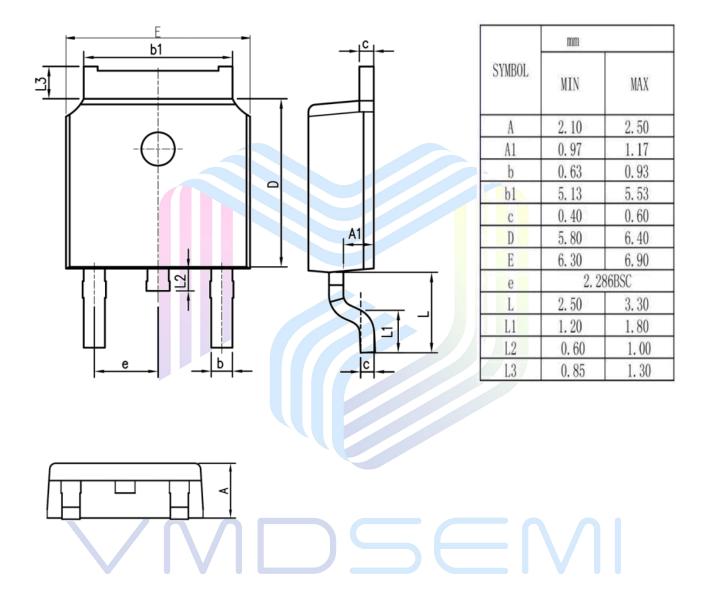
Typical Performance Characteristics






VTTL050R15BNA

VTTL050R15BNA



VTTL050R15BNA

Mechanical Dimensions:

TO-252 Package Information

Unit:mm

VTTL050R15BNA

NOTICE

Hangzhou VMD Semiconductor Co., Ltd (VMD) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to VMD's terms and conditions supplied at the time of order acknowledgement.

VMD, its affiliates, agents, and employees, and all persons acting on its or their behalf, disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

VMD disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify VMD's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

VMD warrants performance of its hardware products to the specifications at the time of sale, testing, reliability and quality control are used to the extent VMD deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

VMD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using VMD's components. To minimize risk, customers must provide adequate design and operating safeguards.

VMD does not warrant or convey any license to any intellectual property rights either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in VMD's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice.

VMD is not responsible or liable for such altered documentation. Resale of VMD's products with statements different from or beyond the parameters stated by VMD for that product or service voids all express or implied warrantees for the associated VMD product or service and is an unfair and deceptive business practice.

All Rights Reserved.

Via-Media Semiconductor Limited Company

http://www.vmdsemi.com

Main Sites:

- Headquarters

Hangzhou Via-Media Semiconductor Co., LTD. 1305-1306, Building 71, No. 90, Wensan Road, Xihu District, Hangzhou, Zhejiang Province, P.R. China

Tel: +86-0571-8515 0563

- Shanghai

Shanghai R&D Center. 1506~1508, Xinyin Building, 888 Yishan Road, Shanghai, P.R of China Tel: +86- 021-54201999

- Xi'an

Xi'an R&D Center 1703B, Building A, Greenland Center, Jinye Road, High-Tech Zone, Xi'an, Shaanxi, P.R of China

- Chengdu Office

Chengdu Winhi Semiconductor Co., LTD. Floor 15, Building 5, No. 171, Hele 2nd Street, Chengdu, Sichuan Province, P.R. China Tel: +86-028-8505 0771

Shenzhen

Shenzhen Sales office
Room 4A15, Block AB, Tianxiang Building,
Chegongmiao, Futian District, Shenzhen, P.R of China
Tel: +86-0755-82570682