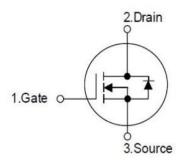
WinhiSemi

VUGA044N02TA

Datasheet


$9m\Omega$, 20V, N-Channel Power MOSFET

VUGA044N02TA

General Description

VUGA044N02TA N-Channel MOSFET is based on unique device design to achieve low RDS_(ON), low gate charge, fast switching and excellent avalanche characteristics.

Symbol

Symbol of VUGA044N02TA

Features

- Low RDS(ON) & FOM
- $\blacksquare R_{DS(ON) max} = 9m\Omega@V_{GS} = 4.5V$
- Extremely low switching loss
- Fast switching and soft recovery

Package Type

Application

- Charging Circuit
- Battery Applications
- Synchronous Rectification
- High Frequency Switching

Package Type of VUGA044N02TA

Ordering Information

Product Name	Package	Marking
VUGA044N02TA	PDFN3.3*3.3	44N02

9mΩ, 20V, N-Channel Power MOSFET

VUGA044N02TA

Absolute Maximum Ratings

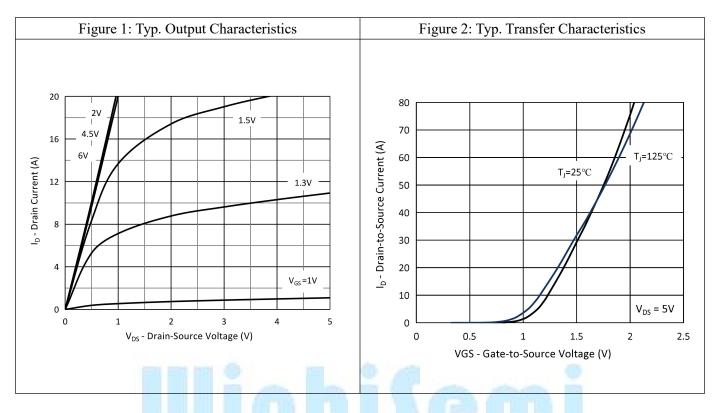
Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V_{DS}	20	V
Gate-Source Voltage	V _{GS}	±8	V
Continuous Drain Current ^{Note 1} , T _C =25°C	I_D	22	A
Pulsed Drain Current ^{Note 2}	I_{DM}	66	A
Max Power Dissipation Note 3, T _C =25°C	P_{D}	19.4	W
Avalanche Current, Single Pulse Note 5	I _{AS}	21	A
Avalanche Energy, Single Pulse Note 5	Eas	66.1	mJ
Operation Junction temperature	T _J	-55 to 150	°C

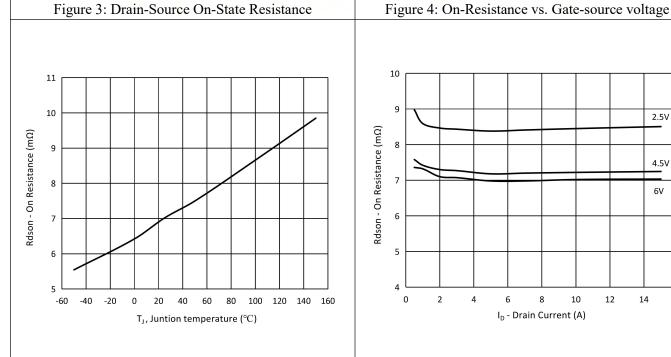
Thermal Resistance

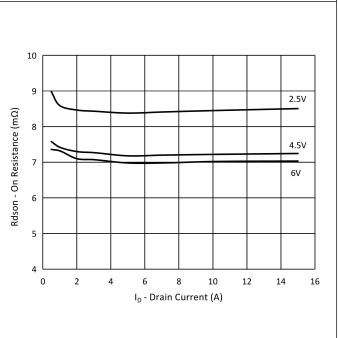
Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$		6.45		°C/W
Thermal Resistance, Junction-to-Ambient ^{Note4}	$R_{ heta JA}$		62		C/W

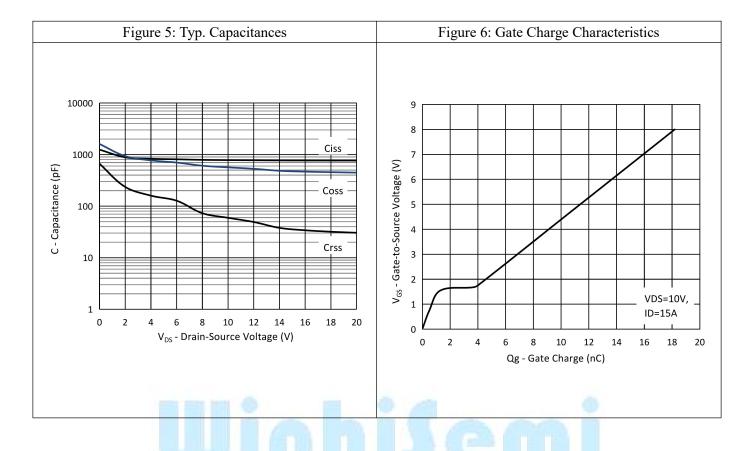
Notes:

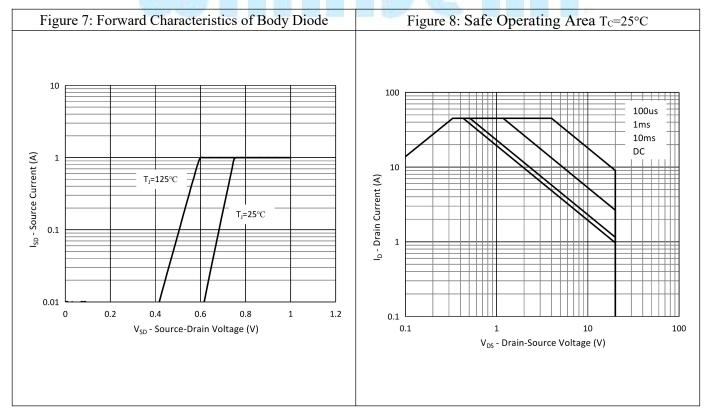
- 1) Calculated continuous current based on maximum allowable junction temperature.
- 2) Repetitive rating; pulse width limited by max. junction temperature.
- 3) P_D is based on max. junction temperature, using junction-case thermal resistance.
- 4) The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with Ta=25 °C.
- 5) V_{DS} =15V, V_{GS} =4.5V, L=0.3mH, Rg=25Ω, starting T_{J} =25 °C.

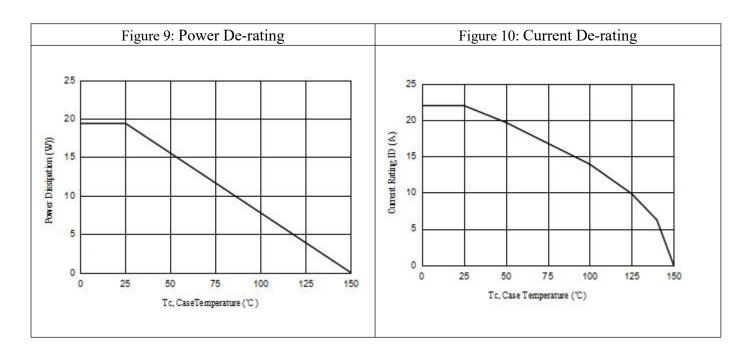

$9m\Omega$, 20V, N-Channel Power MOSFET

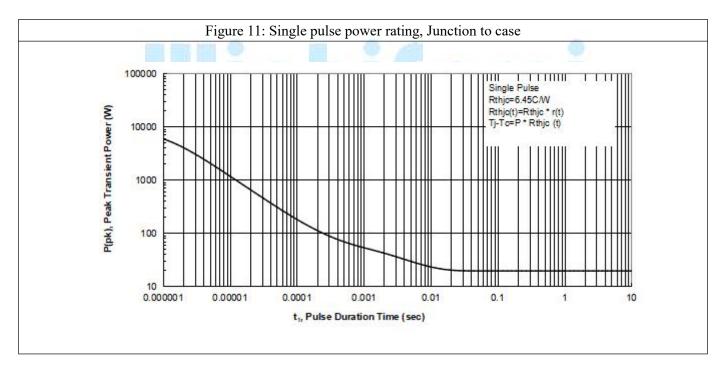

VUGA044N02TA

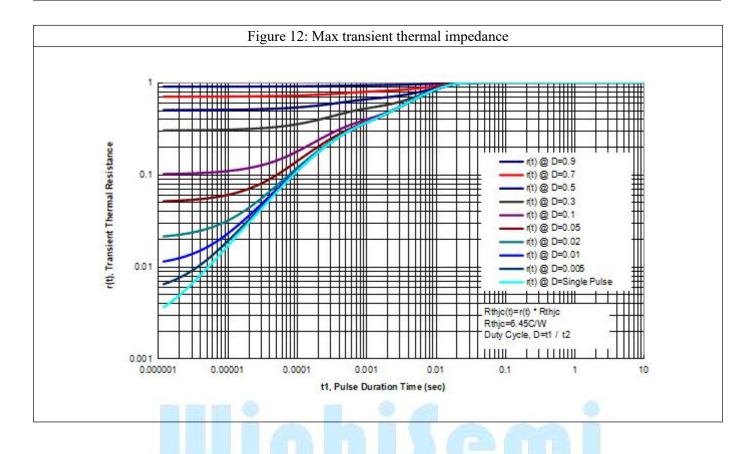

Electrical Characteristics (T_J= 25 °C, unless otherwise specified)

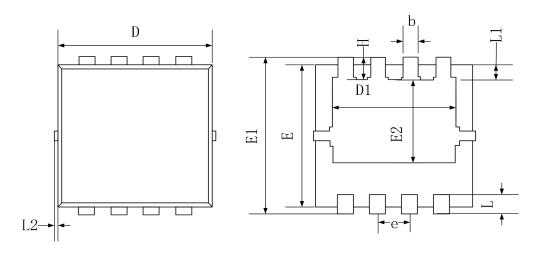

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Statistic Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	20			V
Zero Gate Voltage Drain Current	I_{DSS}	$V_{DS}=20V, V_{GS}=0V$			1	uA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm 8V, V_{DS}=0V$			±100	nA
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_D=250uA$	0.4	0.6	0.9	V
Static Drain-Source On-Resistance	D	V_{GS} =4.5V, I_{D} =5A		7.2	9	mΩ
Static Diani-Source On-Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_{D} =15A		7.2	9	mΩ
Gate Resistance	R_G	f=1MHz, open drain		0.35		Ω
Dynamic Characteristics						
Input Capacitance	Ciss	V _{GS} =0V		782.8		pF
Output Capacitance	Coss	$V_{DS}=10V$		565.7		pF
Reverse Transfer Capacitance	C_{rss}	f=1MHz		59.5		pF
Turn-on Delay Time	t _{d(on)}	$V_{DS}=15V$		7.6		
Rise Time	t_r	V_{GS} =4.5 V		2.8		
Turn-off Delay Time	$t_{d(off)}$	$I_D=6A$		26.2		ns
Fall Time	t_{f}	$R_G=3\Omega$		7.4		
Switching Characteristics						
Total Gate Charge (@VGS=8V)	Qg	V _{GS} =0 to 8V		18.19		
Total Gate Charge (@VGS=4.5V)	Qg	$V_{GS}=0$ to 8 V $V_{DS}=10$ V		10.24		nC
Gate to Source Charge	Q_{gs}	$I_{D}=15A$	10171	1.3		IIC
Gate to Drain Charge	Q_{gd}	ID-13A		2.74		
Reverse Diode Characteristics						
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _{SD} =12A		0.81	1.2	V
Reverse Recovery Time	t _{rr}	V _{DS} =10V		27.73		ns
Reverse Recovery Charge	Qrr	$I_F=12A$		14.41		nC
Peak Reverse Recovery Current	I _{rrm}	di/dt=100A/us		0.9		A

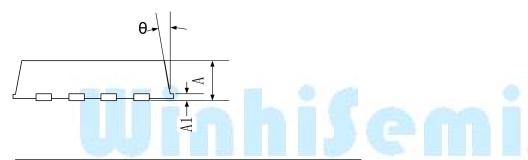

Typical Performance Characteristics











Mechanical Dimensions (PDFN3.3*3.3 Unit:mm)

SYMBOL	MILLIMETERS		
STIVIBUL	MIN	MAX	
А	0.70	0.90	
A1	0.10	0.25	
D	2.90	3.25	
D1	2.25	2.69	
E	2.90	3.20	
E1	3.00	3.60	
E2	1.35	2.20	
b	0.20	0.40	
е	0.65BSC		
L	0.30	0.50	
L1	0.13BSC		
L2	0.00	0.20	
Н	0.15	0.65	
θ	0° 14°		

NOTICE

Chengdu WH Semiconductor Co., Ltd (WH) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to WH's terms and conditions supplied at the time of order acknowledgement.

WH, its affiliates, agents, and employees, and all persons acting on its or their behalf, disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

WH disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify WH's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

WH warrants performance of its hardware products to the specifications at the time of sale, testing, reliability and quality control are used to the extent WH deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

WH does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using WH's components. To minimize risk, customers must provide adequate design and operating safeguards.

WH does not warrant or convey any license to any intellectual property rights either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in WH's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice.

WH is not responsible or liable for such altered documentation. Resale of WH's products with statements different from or beyond the parameters stated by WH for that product or service voids all express or implied warrantees for the associated WH product or service and is an unfair and deceptive business practice.

All Rights Reserve

WinhiSemi

Chengdu Winhi Semiconductor Co., LTD

Main Sites:

- Headquarters

Hangzhou Via-Media Semiconductor Co., LTD. 1305-1306, Building 71, No. 90, Wensan Road, Xihu District, Hangzhou, Zhejiang Province, P.R. China Tel: +86-0571-8515 0563

- Shanghai

Shanghai R&D Center. 1506~1508, Xinyin Building, 888 Yishan Road, Shanghai, P.R of China Tel: +86-021-54201999

- Xi'an

Xi'an R&D Center 1703B, Building A, Greenland Center, Jinye Road, High-Tech Zone, Xi'an, Shaanxi, P.R of China

- Chengdu Office

Chengdu Winhi Semiconductor Co., LTD. Floor 15, Building 5, No. 171, Hele 2nd Street, Chengdu, Sichuan Province, P.R. China Tel: +86-028-8505 0771

- Shenzhen

Shenzhen Sales Center. 17B, No.1 Phoenix Building, 2008 Shennan Road, Shenzhen, P.R of China Tel: +86-0755-82570682