

VTTD065R12BNA

Datasheet

VMDSEMI

General Description

V _{(BR)DSS}	R _{DS(ON)_max}	ID
650V	1.2Ω@10V	10A

Symbol

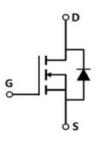


Figure 1 Symbol of VTTD065R12BNA

Features

- Low R_{DS(on)}
- Low FOM
- Extremely low switching loss
- Good stability and uniformity

Application

- Consumer electronics power supply
- LED Lighting
- Standby Power
- Charger

Package Type

TO-220-3L-F

Figure 2 Package Type of VTTD065R12BNA

Ordering Information

Product Name	Package
VTTD065R12BNA	TO-220-3L-F

VTTD065R12BNA

Absolute Maximum Ratings (T_A= 25 °C, unless otherwise specified)

Parameter		Symbol	Rating	Unit
Drain-Source Voltage		V _{DSS}	650	V
Gate-Source Voltage		V _{GSS}	±30	V
Continuous Drain Current ^{Note1}	$T_A=25 \ ^{o}C$	ID	10	
Pulsed Drain Current Note2		I _{DM}	40	A
Avalanche Current ^{Note3}		I _{AS}	20.5	
Single Pulsed Avalanche Energy ^{Note3}		E _{AS}	105	mJ
Total Power Dissipation ^{Note5}	$T_{C}=25 \ ^{\circ}C$	PD	50	W
Junction Temperature		TJ	150	°C
Storage Temperature		T _{STG}	-55 to 150	°C

Thermal Resistance

Parameter	Symbol	Min	Т <mark>у</mark> р	Max	Unit
Thermal Resistance, Junction-to-Case ^{Note6}	Rojc		2 <mark>.5</mark>		°C/W

VMDSEMI

VTTD065R12BNA

Symbol	Test Conditions	Min	Тур	Max	Unit
	•				
BV _{DSS}	$V_{GS}=0V, I_{D}=250uA$	650			V
I _{DSS}	V_{DS} = 650V, V_{GS} =0V			1	uA
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2.0	3.4	4.0	V
R _{DS(ON)}	$V_{GS}=10V, I_{D}=1A$		0.8	1.2	Ω
CISS	V _{DS} =50V		1667		pF
Coss	V _{GS} =0V		87		pF
C _{RSS}	f=1MHz		1.5		pF
Qg	V _{DS} =300V		28		
Qgs	V _{GS} =10V		7.4		nC
Q _{gd}	$I_D = 1A$		11		
Rg	f = 1MHz, Open drain		2.2		Ω
t _{d(on)}	$V_{DD}=300V$		28		
tr	V _{GS} =10V		57		
t _{d(off)}	$I_{D}=2A$		70		ns
tf	$R_{G}=3\Omega$		52		
V _{SD}	$V_{GS}=0V, I_S=2A$			1.2	V
	BV _{DSS} I _{DSS} I _{GSS} V _{GS(th)} R _{DS(ON)} C _{ISS} C _{RSS} C _{RSS} Q _g Q _g Q _g Q _g Q _g Rg t _{d(on)} t _r t _{d(off)}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c } BV_{DSS} & V_{GS}{=}0V, I_{D}{=}250uA & 650 & & & 1\\ I_{DSS} & V_{DS}{=}650V, V_{GS}{=}0V & & & \pm 100 \\ \hline I_{GSS} & V_{GS}{=}\pm 30V, V_{DS}{=}0V & & & \pm 100 \\ \hline V_{GS(th)} & V_{DS}{=}V_{GS}, I_{D}{=}250uA & 2.0 & 3.4 & 4.0 \\ \hline R_{DS(ON)} & V_{GS}{=}10V, I_{D}{=}1A & & 0.8 & 1.2 \\ \hline \hline C_{ISS} & V_{DS}{=}50V & & & 1667 \\ \hline C_{OSS} & V_{GS}{=}0V & & & 87 \\ \hline C_{RSS} & f{=}1MHz & & 1.5 & \\ \hline Q_g & V_{DS}{=}300V & & 28 & \\ \hline Q_{gs} & V_{GS}{=}10V & & 7.4 & \\ \hline Q_{gd} & I_{D}{=}1A & & 11 & \\ \hline Rg & f{=}1MHz, Open drain & 2.2 & \\ \hline \hline t_{d(on)} & V_{DD}{=}300V & & 28 & \\ \hline t_r & V_{GS}{=}10V & & 57 & \\ \hline t_{d(off)} & I_{D}{=}2A & 70 & \\ \hline t_f & R_{G}{=}3\Omega & & 52 & \\ \hline \end{array}$

Electrical Characteristics (T_J= 25 °C, unless otherwise specified)

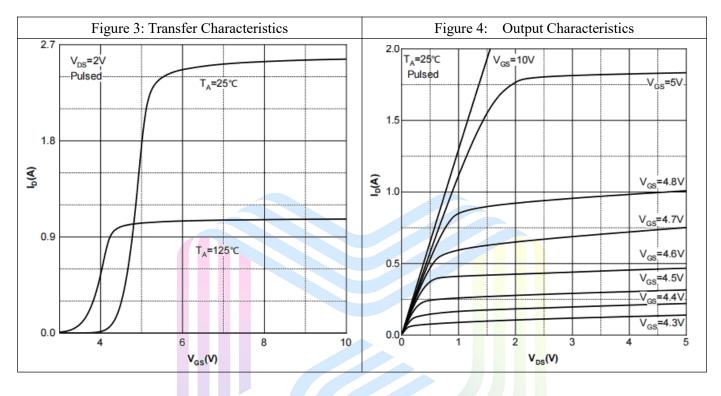
Notes :

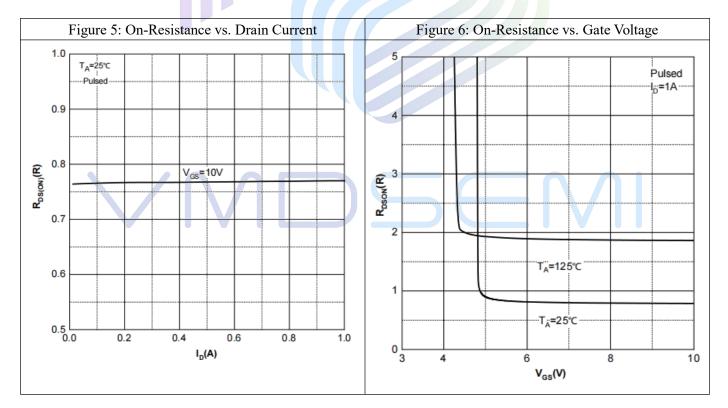
1. The maximum current rating is limited by package. And device mounted on a large heatsink.

2.Pulse Test : Pulse Width $\leq 10\mu s$, duty cycle $\leq 1\%$.

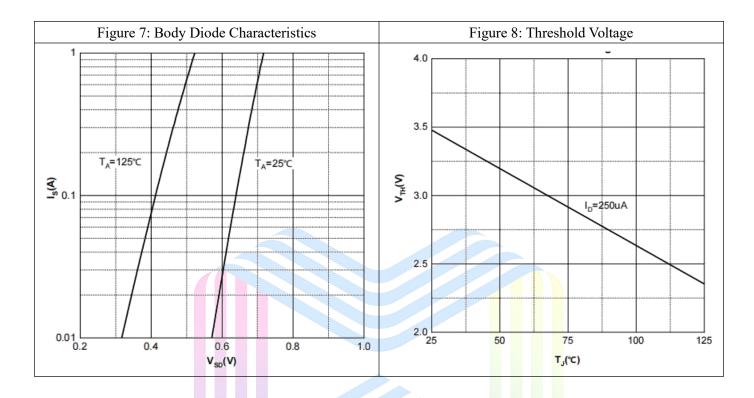
 $3.E_{AS}$ condition: $V_{DD} = 100V$, $V_{GS} = 10V$, L = 0.5mH, $R_G = 25\Omega$ Starting $T_J = 25^{\circ}C$.

4. Pulse Test : Pulse Width \leq 300µs, duty cycle \leq 2%.

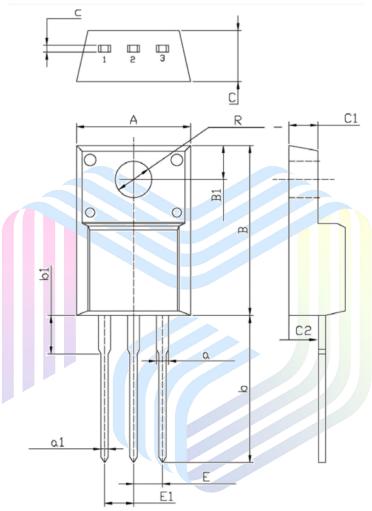

5. The power dissipation P_D is limited by $T_{J(MAX)} = 150^{\circ}C$. And device mounted on a large heatsink


6.Device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}C$.

VTTD065R12BNA


Typical Performance Characteristics

VTTD065R12BNA



VTTD065R12BNA

Mechanical Dimensions:

	Symphol	Dimensions In Millimeters		Dimensions In Inches		
	Symbol	Min.	Max.	Min.	Max.	
	С	4.500	4.900	0.177	0.193	
	с	0.400	0.600	0.016	0.024	
	А	9.960	10.360	0.392	0.408	
	В	15.670	16.070	0.617	0.633	
	B1	3.300	3.500	0.130	0.138	
	R	3.080	3.280	0.121	0.129	
	b	12.480	13.480	0.491	0.531	
	b1	2.900	3.900	0.114	0.154	
	а	1.080	1.480	0.043	0.058	
	a1	0.700	0.900	0.028	0.035	
	E	2.340	2.740	0.092	0.108	
	E1	2.340	2.740	0.092	0.108	
	C1	2.340	2.740	0.092	0.108	
	C2	2.560	2.960	0.101	0.117	

VTTD065R12BNA

NOTICE

Hangzhou VMD Semiconductor Co., Ltd (VMD) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to VMD's terms and conditions supplied at the time of order acknowledgement.

VMD, its affiliates, agents, and employees, and all persons acting on its or their behalf, disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

VMD disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify VMD's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

VMD warrants performance of its hardware products to the specifications at the time of sale, testing, reliability and quality control are used to the extent VMD deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

VMD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using VMD's components. To minimize risk, customers must provide adequate design and operating safeguards.

VMD does not warrant or convey any license to any intellectual property rights either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in VMD's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice.

VMD is not responsible or liable for such altered documentation. Resale of VMD's products with statements different from or beyond the parameters stated by VMD for that product or service voids all express or implied warrantees for the associated VMD product or service and is an unfair and deceptive business practice.

All Rights Reserved.

VMD5EMI

Via-Media Semiconductor Limited Company

http://www.vmdsemi.com

Main Sites:

- Headquarters

Hangzhou Via-Media Semiconductor Co., LTD. 1305-1306, Building 71, No. 90, Wensan Road, Xihu District, Hangzhou, Zhejiang Province, P.R. China Tel: +86-0571-8515 0563

- Shanghai

Shanghai R&D Center. 1506~1508, Xinyin Building, 888 Yishan Road, Shanghai, P.R of China Tel: +86- 021-54201999

- Xi'an

Xi'an R&D Center 1703B, Building A, Greenland Center, Jinye Road, High-Tech Zone, Xi'an, Shaanxi, P.R of China

Chengdu Office

Chengdu Winhi Semiconductor Co., LTD. Floor 15, Building 5, No. 171, Hele 2nd Street, Chengdu, Sichuan Province, P.R. China Tel: +86-028-8505 0771

- Shenzhen

Shenzhen Sales Center. 17B, No.1 Phoenix Building, 2008 Shennan Road, Shenzhen, P.R of China Tel: +86-0755- 82570682