

VFTP010R050NA

Datasheet

VFTP010R050NA

General Description

The VMD VFTD010R050NB MOSFET is based on unique device design to achieve low RDS(ON), low gate charge, fast switching and excellent avalanche characteristics. The high V_{th} series is specially optimized for high systems with gate driving voltage greater than 10V.

Symbol

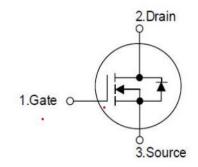


Figure 1 Symbol of VFTP010R050NA

Features

- Ultra Low $R_{DS(ON)_max} = 5.0 \text{m}\Omega @V_{GS} = 10 \text{V}$.
- Extremely low switching loss
- Excellent stability and uniformity
- 100% UIS tested, 100% △VDS Tested
- RoHS and Halogen-Free Compliant

Application

- Charger / Adapter
- Server/Telecom
- Synchronous Rectification
- High Frequency Switching

Package Type

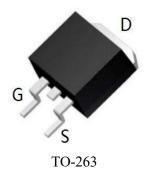


Figure 2 Package Type of VFTP010R050NA

Ordering Information

Product Name	Package			
VFTP010R050NA	TO-263			

VFTP010R050NA

Absolute Maximum Ratings

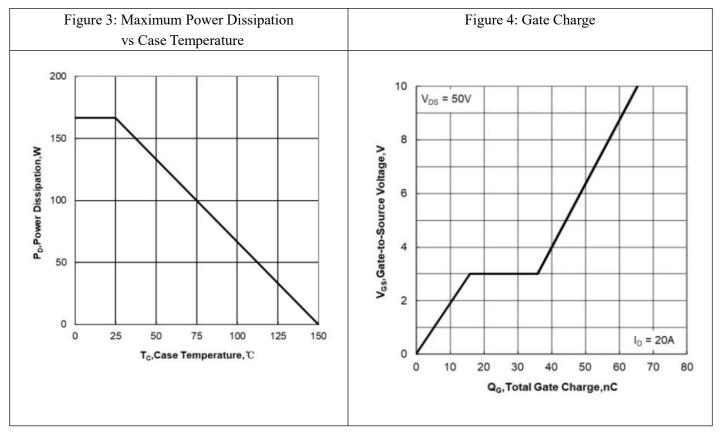
Parame	Symbol	Rating	Unit		
Drain-Source Voltage		V_{DSS}	100	V	
Gate-Source Voltage		$ m V_{GSS} = \pm 20$		V	
Continuous Drain Current	T _C =25°C(Note 5)	T	145		
	T _C =100°C(Note 5)	I_{D}	91	A	
Pulsed Drain Current (Note 3)	I_{DM}	580	A		
Power Dissipation,T _C =25°C(Note 2)		P_D	167	W	
Avalanche Energy, Single Pulse (Note 3,Note6)		E _{AS}	136	mJ	
Avalanche Current, Repetitive (Note 3,Note6)		I_{AS}	23	A	
Operating and Storage Tempe	TJ	-55 to 150	°C		

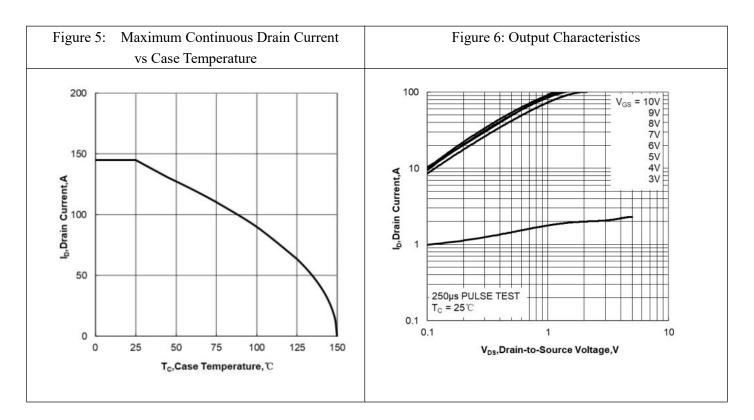
Thermal Resistance

Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$			0.75	°C/W
Thermal Resistance, Junction-to-Ambient (Note 1,Note4)	$R_{\theta JA}$			55	°C/W

Notes:

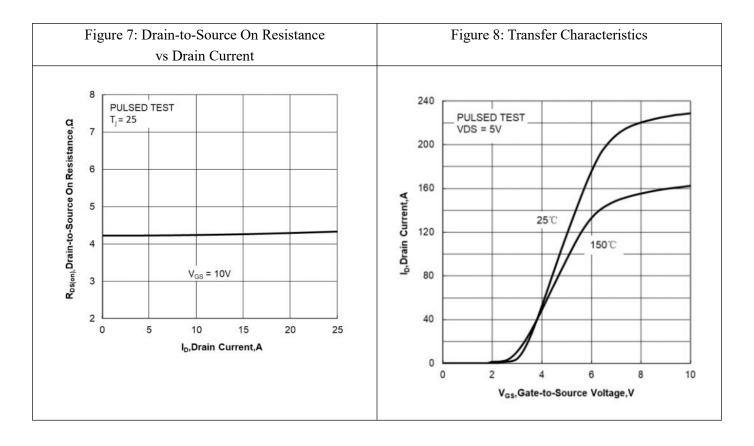
- 1. The value of $R_{\theta JC}$ is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- 2. The power dissipation PD is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- 3. Single pulse width limited by junction temperature $T_{J(MAX)}=150$ °C.
- 4. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.
- 5. The maximum current rating is package limited.
- 6. The EAS data shows Max. rating. The test condition is V_{DS}=50V,V_{GS}=10V,L=0.5mH

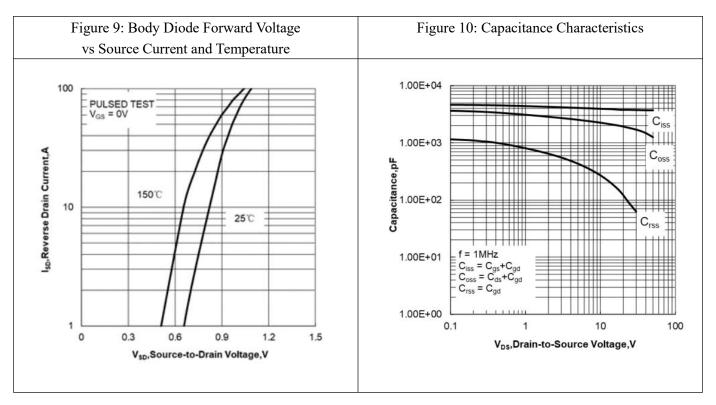

VFTP010R050NA

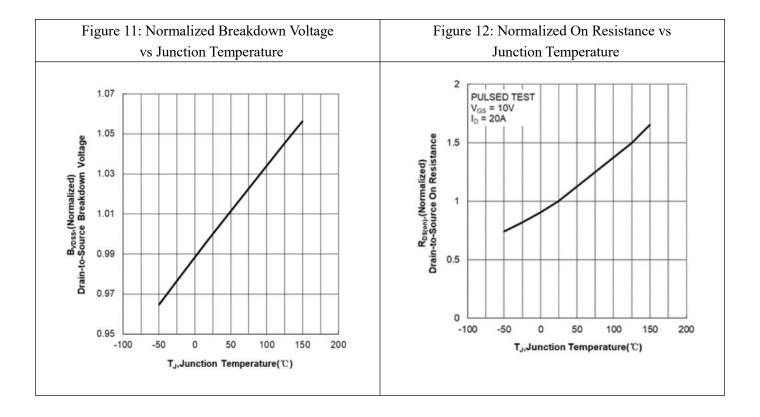

Thermal Resistance T_J= 25 °C, unless otherwise specified

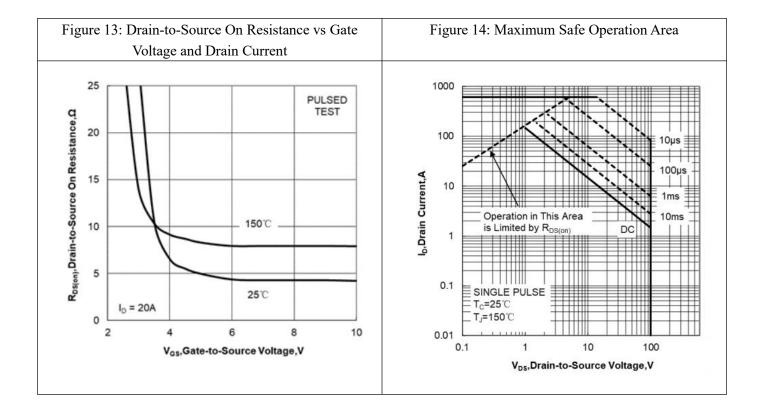
Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Statistic Characteristics							
Drain-Source Breakdown Voltage		$\mathrm{BV}_{\mathrm{DSS}}$	V _{GS} =0V, I _D =250uA	100			V
Zero Gate Voltage Drain Current		I _{DSS}	V _{DS} =80V, V _{GS} =0V			1	uA
Gate-Body Leakage Current	Forward	I_{GSSF}	$V_{GS}=20V, V_{DS}=0V$			100	A
	Reverse	I_{GSSR}	V_{GS} =-20V, V_{DS} =0V			-100	nA
Gate Threshold Voltage		$V_{\text{GS(TH)}}$	$V_{DS}=V_{GS}$, $I_{D}=250uA$	2.0	3.0	4.0	V
Static Drain-Source On-Resistance		$R_{DS(\mathrm{ON})}$	$V_{GS}=10V, I_{D}=20A$		4.2	5.0	$m\Omega$
Gate Resistance	Gate Resistance		f=1MHz, Open Drain		1.75		Ω
Dynamic Characteristics							
Input Capacitance		C_{ISS}	V -50 V -0V		3610		pF
Output Capacitance		C_{OSS}	V_{DS} =50, V_{GS} =0V, f=1MHz		1240		pF
Reverse Transfer Capacitance		C _{RSS}	I=IMIHZ		32		pF
Turn-on Delay Time		$t_{d(on)}$	V_{DD} =50V, I_{D} =50A, R_{G} =3.0 Ω , V_{GS} =10V		28		ns
Rise Time Turn-off Delay Time		$t_{\rm r}$			24		
		$t_{d(off)}$			64		
Fall Time		t_{f}			22		
Gate Charge Characteristics							
Gate to Source Charge Q		Q_{gs}	V_{DD} =50V, I_{D} =50A, V_{GS} =10V		16		nC
Gate to Drain Charge		Q_{gd}			20		
Gate Charge Total		Q_{g}	V _{GS} -10 V		65.5		
Reverse Diode Characteristics							
Continuous Source Current		I_S				145	A
Drain-Source Diode Forward Voltage		V_{SD}	V _{GS} =0V, I _{SD} =20A		0.8	1.0	V
Reverse Recovery Time		t_{rr}	I _{SD} =20A,		63		ns
Reverse Recovery Charge		Q_{rr}	$dI_F/dt=100A/us$		95		пC

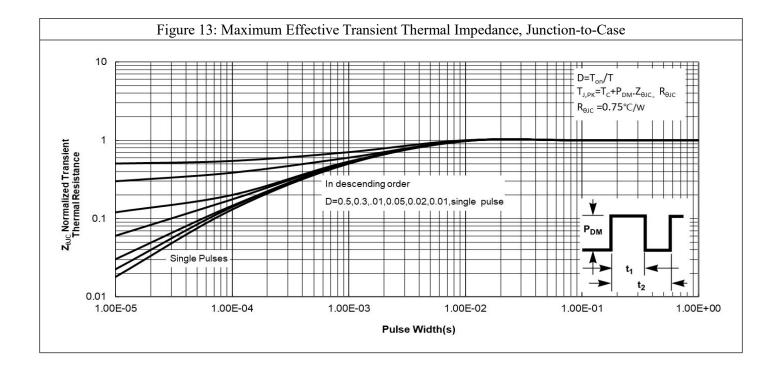
VFTP010R050NA

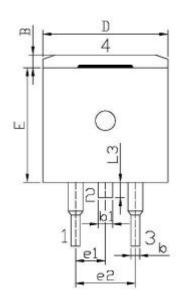

Typical Performance Characteristics

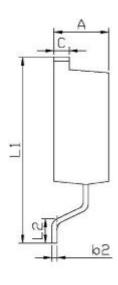



VFTP010R050NA




VFTP010R050NA




VFTP010R050NA

VFTP010R050NA

Mechanical Dimensions (TO-263 Unit: mm)

Cymbal	Dimensions(mm)					
Symbol	Min.	Тур.	Max.			
A	4.3	-	4.7			
В	1.0	-	1.4			
b	0.7	-	0.9			
b1	1.15	-	1.35			
С	1.20	-	1.40			
D	9.8	-	10.20			
Е	9.0	-	9.4			
e1	2.34	-	2.74			
e2	4.88	-	5.28			
L1	15.0	-	16.0			
L2	2.24	-	2.84			
L3	1.2	-	1.60			

VFTP010R050NA

NOTICE

Hangzhou VMD Semiconductor Co., Ltd (VMD) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to VMD's terms and conditions supplied at the time of order acknowledgement.

VMD, its affiliates, agents, and employees, and all persons acting on its or their behalf, disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

VMD disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify VMD's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

VMD warrants performance of its hardware products to the specifications at the time of sale, testing, reliability and quality control are used to the extent VMD deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

VMD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using VMD's components. To minimize risk, customers must provide adequate design and operating safeguards.

VMD does not warrant or convey any license to any intellectual property rights either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in VMD's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice.

VMD is not responsible or liable for such altered documentation. Resale of VMD's products with statements different from or beyond the parameters stated by VMD for that product or service voids all express or implied warrantees for the associated VMD product or service and is an unfair and deceptive business practice.

All Rights Reserved.

Via-Media Semiconductor Limited Company

http://www.vmdsemi.com

Main Sites:

- Headquarters

Hangzhou Via-Media Semiconductor Co., LTD. 1305-1306, Building 71, No. 90, Wensan Road, Xihu District, Hangzhou, Zhejiang Province, P.R. China Tel: +86-0571-8515 0563

- Shanghai

Shanghai R&D Center. 1506~1508, Xinyin Building, 888 Yishan Road, Shanghai, P.R of China Tel: +86- 021-54201999

- Xi'an

Xi'an R&D Center 1703B, Building A, Greenland Center, Jinye Road, High-Tech Zone, Xi'an, Shaanxi, P.R of China

- Chengdu Office

Chengdu Winhi Semiconductor Co., LTD. Floor 15, Building 5, No. 171, Hele 2nd Street, Chengdu, Sichuan Province, P.R. China Tel: +86-028-8505 0771

- Shenzhen

Shenzhen Sales Center. 17B, No.1 Phoenix Building, 2008 Shennan Road, Shenzhen, P.R of China Tel: +86-0755- 82570682